
RAJU MANJHI SEM 4 PAPER 10

1

HAMMING CODES

Hamming codes provide another method for error correction. Error bits, called Hamming

bits, are inserted into message bits at random locations. It is believed that the

randomness of their locations reduces the odds that these Hamming bits themselves

would be in error. This is based on a mathematical assumption that because there are so

many more message bits compared with Hamming bits, there is a greater chance for a

message bit to be in error than for a Hamming bit to be wrong. Determining the

placement and binary value of the Hamming bits can be implemented using hardware,

but it is often more practical to implement them using software. The number of bits in a

message (M) are counted and used to solve the following equation to determine the

number of Hamming bits (H) to be used:

2H ≥ M + H + 1

Once the number of Hamming bits is determined, the actual placement of the bits into the

message is performed. It is important to note that despite the random nature of the

Hamming bit placements, the exact sample placements must be known and used by both

the transmitter and receiver. Once the Hamming bits are inserted into their positions, the

numerical values of the bit positions of the logic 1 bits in the original message are listed.

The equivalent binary numbers of these values are added in the same manner as used in

previous error methods by discarding all carry results. The sum produced is used as the

states of the Hamming bits in the message. The numerical difference between the

Hamming values transmitted and that produced at the receiver indicates the bit position

that contains a bad bit, which is then inverted to correct it.

Ex. The given data

10010001100101(14- bits)

The number of hamming codes

2H ≥ M + H + 1

H = ? M = 14 to satisfy this equation H should be 5 i.e. 5 hamming code
bits should be incorporated in the data bits.

1 0 0 1 0 0 0 1 1 0 H 0 H 1 H 0 H 1 H

Now count the positions where binary 1’s are present. Add using mod 2 operation (Ex-OR). The
result will give the Hamming code at the transmitter end.

1’s position Binary equivalent

RAJU MANJHI SEM 4 PAPER 10

2

2 - 0 0 0 1 0

6 - 0 0 1 1 0

11 - 0 1 0 1 1

12 - 0 1 1 0 0

16 - 1 0 0 0 0

19 - 1 0 0 1 1

Hamming code = 0 0 0 0 0

This Hamming code will be incorporated at the places of ‘H’ in the data bits and the data

will be transmitted.

How to find out there is an error in the data?

Let the receiver received the 12th bit as zero. The receiver also finds out the Hamming

code in the same way as transmitter.

1’s position Binary equivalent

 2 - 0 0 0 1 0

6 - 0 0 1 1 0

11 - 0 1 0 1 1

16 - 1 0 0 0 0

19 - 1 0 0 1 1

Hamming
code at the

 0 1 1 0 0

receiver

Hamming code at the Tx 0 0 0 0 0

Hamming code at the Rx 0 1 1 0 0

 0 1 1 0 0

The decimal equivalent for the binary is 12 so error is occurred at 12th place.

RAJU MANJHI SEM 4 PAPER 10

3

Data Link Protocols

1. Unrestricted Simplex Protocol:

In this the following assumptions are made

a. Data transmission is simplex i.e. transmitted in one direction only.

b. Both transmitting and receiving network layers are ready.

c. Processing time is ignored.

d. Infinite buffer space is available.

e. An error free channel.

This is an unrealistic protocol, which has a nickname “Utopia”.

2. A simplex stop and wait protocol:

The following assumptions are made

a. Error free channel.

b. Data transmission simplex.

A B

1. Sends a frame 1. Receives the frame

Receives ack and and sends Ack

2. Sends next frame and 2. Receives frame sends

so on Ack

Since the transmitter waits for Δt time for an Ack this protocol is called stop and wait

protocol.

RAJU MANJHI SEM 4 PAPER 10

4

3. A simplex protocol for a noisy channel

A B

1. Sends a frame 1. Receives a frame

2. Receives Ack and sends Ack

and sends next frame damaged while no frame and no

Transmitting

no Ack waits Ack

Δt time sends duplicate Receives the next frame

When this protocol fails?

A B

1. Sends a frame 1. Received by B

2. Ack is not received Ack damaged while 2.And sends Ack

Transmitting

wait some time and sends Received duplicate duplicate

(same frame)

At this situation protocol fails because the receiver receives a duplicate frame and there is

no way to find out whether the receiver frame is original or duplicate. So the protocol fails

at this situation.

Now what is needed is some way for the Rx to distinguish a frame and a duplicate. To

achieve this, the sender has to put a sequence number in the header of each frame it

sends. The Rx can check the sequence number of each arriving frame to see if it is a new

frame or a duplicate.

RAJU MANJHI SEM 4 PAPER 10

5

Here a question arises: What is the minimum number of bits needed for the sequence

number? The ambiguity is between a frame and its successor. A 1-

bit sequence number (0 or 1) is therefore sufficient. At each instant of time, the receiver

excepts a particular sequence number next. Any arriving frame containing wrong

sequence number is rejected as a duplicate. When a frame containing the correct

sequence number arrives, it is accepted, passed to the network layer and then expected

sequence number is incremented i.e. 0 becomes 1 and one becomes 0. Protocols in

which a sender waits for a positive ack before advancing to the next data item are often

called PAR (positive ack with retransmission) or ARQ (automatic repeat request).

When this protocol fails?

A B

1. A Sends a frame F0 1. B receives it and

sends Ack AF0

2. Receives AF0 send 2. B receives F1 and sends

next frame F1 Ack AF1 (while transmitting

3. A’s time out and sends Ack delayed and reached late).

duplicate frame F1

4. In between received the 3. Receives F1 and

delayed Ack AF1 and sends sends Ack AF1

frame F0 (while transmitting

F0 damaged.)

5. Now the duplicate frame 4.B does not get frame and no

Ack AF1 received Ack.

6. Now A thinks that the Ack received is the ack of new frame F0 and A sends next

frame F1. So a frame F0 is missed. At this situation this protocol fails.

RAJU MANJHI SEM 4 PAPER 10

6

PIGGY BACKING

In most practical situations there is a need of transmitting data in

both directions. This can be achieved by full duplex

transmission. If this is done we have two separate physical

circuits each with a ‘forward ‘ and ‘reverse’ channel. In both

cases, the reverse channel is almost wasted. To overcome this

problem a technique called piggy backing is used.

The technique of temporarily delaying outgoing

acknowledgements so that they can be hooked onto the next

outgoing data frame is known as piggy backing.

However, piggybacking introduces a complication not present

with separate acknowledgements. How long should the data link

layer wait longer than the sender’s timeout period, the frame will

be retransmitted, defeating the whole purpose of having

acknowledgements. Of course, the data link layer cannot foretell

the future, so it must resort to some ad hoc scheme, such as

waiting a fixed number of milli seconds. If a new packet arrives

quickly, the acknowledgement is piggy backed onto it; otherwise,

if no new packet has arrived by the end of this time period, the

data link layer just sends a separate acknowledgement frame.

